The formation of protostars

This schematic shows a proposed pathway (top row) for the formation of protostars, based on four very young protostars (bottom row) observed by VLA (orange) and ALMA (blue). Step 1 represents the collapsing fragment of gas and dust. In step 2, an opaque region starts to form in the cloud. In step 3, a hydrostatic core starts to form due to an increase in pressure and temperature, surrounded by a disk-like structure and the beginning of an outflow. Step 4 depicts the formation of a class 0 protostar inside the opaque region, that may have a rotationally supported disk and more well-defined outflows. Step 5 is a typical class 0 protostar with outflows that have broken through the envelope (making it optically visible), an actively accreting, rotationally supported disk. In the bottom row, white contours are the protostar outflows as seen with ALMA.

Protostars in Orion Molecular Clouds

This image shows the Orion Molecular Clouds, the target of the VANDAM survey. Yellow dots are the locations of the observed protostars on a blue background image made by Herschel. Side panels show nine young protostars imaged by ALMA (blue) and the VLA (orange).

VANDAM survey

ALMA and the VLA observed more than 300 protostars and their young protoplanetary disks in Orion. This image shows a subset of stars, including a few binaries. The ALMA and VLA data complement each other: ALMA sees the outer disk structure (visualized in blue), and the VLA observes the inner disks and star cores (orange).

ALMA Peers into the Turbulent Atmosphere of Jupiter

Swirling clouds, big colorful belts of sinking gas, and giant storms. What can radio telescopes detect below the visible clouds of Jupiter? What is causing the many storms and eruptions that we see hovering around the planet? The Atacama Large Millimeter/submillimeter Array (ALMA), observing in radio wavelengths, gives us the first view of Jupiter’s atmosphere down to fifty kilometers below the planet’s three different cloud layers, or decks.