SOCORRO, NM — The smallest protoplanetary disk ever seen rotating around a young star has been detected by an international team of astronomers using the National Science Foundation’s Very Large Array (VLA) radio telescope. If confirmed, this result could provide an “ideal laboratory” for studying potential planet-forming disks of a size similar to the one that formed our Solar System.
The researchers used the VLA to image the core of an object known as NGC 2071, some 1300 light years from Earth. The team of astronomers was able to measure the rotation of a disk seen around a young star by tracking water masers – clusters of super-heated molecules that amplify radio emission — within it. This is the first direct evidence of such motion in a protoplanetary disk.
“This result is exciting because only through understanding protoplanetary disks can scientists answer the question of how easy – or hard – it is to create planets,” said Jose M. Torrelles of the Institute for Astrophysics of Andalucia in Granada, Spain, leader of the research team. “Other protoplanetary disks have been found, but the system in NGC 2071 is the first that may be comparable to the disk that created our own Solar System. Its size is similar to the orbit of the planet Neptune around our Sun.”
“Because there is very little matter in one of these protoplanetary disks — typically less than one hundredth the mass of our Sun — they are extremely difficult to detect and study” said Paul Ho of the Harvard-Smithsonian Center for Astrophysics and another team member. “We needed the highest possible resolution of the VLA to do this work.”
The VLA is an array of twenty-seven radio dishes, each 25 meters in diameter, located outside of Socorro. The individual antennas can be moved along tracks to change the array’s alignment. The work on NGC 2071 was done when the array was stretched out to over 36 kilometers, thus providing the extremely high resolution necessary to image the system.
This disk, although tiny when compared to some suspected planet-forming systems recently discovered by other astronomical techniques, contains several compact clusters of water molecules that amplify microwave radio emissions in a manner similar to the way a laser amplifies light. By tracking the motions of these powerful, naturally occurring amplifiers, or “masers,” the researchers could determine that a mass about the size of our Sun lies at the center of this disk.
The researchers also detected a powerful radio jet, centered on the disk of water masers but perpendicular to it, shooting out of NGC 2071. Theorists have speculated that such jets are produced by accretion disks around very young stars, where flowing winds are driven outward by material that fails to fall onto the star. This may represent the smallest — and perhaps earliest — example of this disk-jet phenomenon seen to date.
“We’re pretty sure that systems like this, with disks of gas and dust surrounding a young star, turn into solar systems containing planets, moons and comets, but we don’t know exactly how they do it,” said Dr. Luis Rodriguez of the National Autonomous University of Mexico. “This particular object, because we can see all these phenomena and measure the rotation speeds and masses, is going to provide us an ideal laboratory for studying the mysterious process of planet formation.”
In addition to Torrelles and Ho, the other authors of the report published in the 1 October 1998 issue of the Astrophysical Journal were Drs. Jose F. Gomez of the Laboratory for Space and Astrophysics, Guillem Anglada of the Institute of Astrophysics of Andalucia, Spain, and Rodriguez and Dr. Salvador Curiel of the National Autonomous University of Mexico.
The VLA is an instrument of the National Radio Astronomy Observatory, a facility of the National Science Foundation, operated under cooperative agreement by the Associated Universities, Inc.
Contacts:
Dave Finley, National Radio Astronomy Observatory
(505) 835-7302
dfinley@nrao.edu
Megan Watzke, Harvard-Smithsonian Center for Astrophysics
(617) 495-7463
mwatzke@cfa.harvard.edu