The National Science Foundation’s Very Large Array (VLA) radio telescope in New Mexico is an exceedingly powerful scientific instrument, and has transformed many areas of astronomy in its more than 15 years of operation. It has been used by more astronomers and has produced more scientific papers than any other radio telescope. Though its position as one of the world’s premier radio telescopes will remain unchallenged for a long time, new technologies could increase its scientific capabilities greater than tenfold. Details were presented today to the American Astronomical Society’s meeting in Madison, Wisconsin. An enhanced VLA, incorporating state-of-the-art technologies, would provide scientists with a number of important, new capabilities, including detailed investigations of the physics of solar radio bursts; improved radar probes of planets, asteroids and comets; the ability to image protoplanetary disks around young stars; more rapid response and effective observations of transient events such as supernovae; new types of information about gas both within our own Galaxy and in other galaxies; and greatly improved ability to study clusters of galaxies and extremely distant objects in the Universe. In addition, the enhanced VLA will serve as an improved partner with the Very Long Baseline Array (VLBA), a continent-wide radio telescope, also part of the National Radio Astronomy Observatory (NRAO).
“The VLA upgrade proposes an essentially new instrument, created from two existing instruments, with power and capability far exceeding that of either one alone,” said Rick Perley, NRAO Project Scientist for the VLA Upgrade Project. “It builds on the existing staff and infrastructure and would hardly affect operations costs. In today’s fiscal climate, this provides the benefit of a `new’ instrument with outstanding scientific capability at the least cost,” Perley added.
The VLA was built in the 1970s and dedicated in 1980. At the time of its completion, it was a state-of-the-art instrument. Even today, “it exceeds all other radio astronomy facilities with its combination of sensitivity, flexibility, speed, and overall imaging quality,” Perley said. However, many of the technologies used by the VLA, such as computing, high-speed data transfer, and radio receivers, have greatly advanced over the past 15 years.
“The VLA has in place all the needed infrastructure to take maximum advantage of these technological advances at minimum cost,” Perley said. The VLA of the future, Perley said, could have:
- Sensitivity improved by a factor of 2 to 15, depending on frequency;
- A capacity for gathering information on spectral lines increased by a factor of 16;
- Complete frequency coverage, versus very spotty current coverage;
- Resolution increased by a factor of about 8; and
- Complete integration with the VLBA (a long-term project).
This would produce an instrument with “an outstanding, unique capability: continuous frequency coverage over a factor of 500 and continuous resolution coverage over a factor of a million, with the best sensitivity of any current instrument,” Perley said. The scientific capability of the VLA now is limited in many areas by the aging technology currently employed. These limitations can be solved inexpensively by replacing the older equipment with new, state-of-the-art technology.
The National Radio Astronomy Observatory began the VLA Upgrade Project with a scientific workshop held in Socorro, NM, in January of 1995. Scientists from many specialties within astronomy and planetary science were invited to this workshop to present their needs for future observations. The participants of this workshop produced a book outlining the goals of the VLA Upgrade Project. Another scientific workshop is planned for 1997.
NRAO scientists and engineers now are working in groups to focus on specific aspects of the upgrade project. “We continue to solicit feedback from all interested members of the scientific community on how we can best serve their needs with an improved VLA for the next century,” Perley said.
###
The VLA and the VLBA are instruments of the NRAO, a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.